Projective plane curves

Def: A projective plane curve is an equivalence class of forms in k[x, y, z] s.t. $F \sim G \iff F = \lambda G$ for some $\lambda \in k$ honzero.

All notation, definitions, conventions carry over from affine curves.

<u>Remark</u>: Note that if F is a projective curve and P = [x:y:1], then $O_p(F) \cong O_p(f)$, where $f = F(x, y, 1) \in k[x, y]$.

We define the multiplicity of F at P in this case to be $m_p(F) := m_p(f)$.

Recall: If $f = f_m^* + \dots + f_{m+r}$ is an affine curve, P = (0,0), then the multiplicity of f at P is m.

Claim: F a plane curve, then P is a multiple point of F $\iff F(P) = F_x(P) = F_y(P) = F_z(P) = 0.$

Pf: WLOG, assume PEU3 so P= [a:b:1].

Restricting to U_s , P is a multiple point $\iff F(P) = F_x(P) = F_y(P) = 0$.

If $P \neq [0:0:1]$, then $P \in U_i$ for some i = lor 2, and we get $F_2(P)=0$.

$$|f P = [0:v:1], \text{ then } F = \pi f + yg + \lambda_z^d \Longrightarrow \lambda = 0 \Longrightarrow F_z = \pi f_z + yg_z \Longrightarrow F_z(P) = 0.$$

Def: let F be a plane curve, P a point in F,
$$P \in U_i$$
.
let L be a line through P. Let f and l be the dehomog.
of F and L w.r.t. x_i . Then L is tangent to F at P \iff
l is tangent to f a + P.

$$EX: F = xy^4 + yz^4 + xz^4$$

If z = 0, then y = 0, and F(1, 0, 0) = 0, so [1:0:0] is a mult. point.

- If x = -y, then $-y^4 = z^4 = 4y^4 \implies y = x = 0 \implies z = 0$, which doesn't work, so [1:0:0] is the only multiple point.
- $[1:0:0] \in U_1$, and dehomogenizing gives $f = y^4 + z^4 + yz^4$, which has multiplicity 4 at [1:0:0], and the tangent lines are the 4 factors of $y^4 + z^4$.

$$I_{p}(F, G) := I_{p}(f_{3}),$$

where f and g are F and G dehomogenized w/ respect to Ui.

<u>Remark</u>: $I_p(F,G)$ satisfies all the properties of the affine intersection #, except:

- In 3.) T should be a projective change of coordinates.
- In 7.), which says $I_{p}(F,G) = I_{p}(F,G+AF)$, A should be a form $w/ \deg A = \deg G \deg F$.